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1. Information and Shannon entropy

Entropy is a measure of the uncertainty of a random variable.

Notation:

X a random variable.

p(x) = PrfX = xg, the probability function of X,

0 � p(x) � 1, ∑
x2X

p(x) = 1.

The alphabet X is the set of all possible outcomes of X.
The outcomes of X are also called letters, symbols or states.

If #X < ∞, X is called a �nite-alphabet, or �nite-state rv
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1. Information and Shannon entropy

De�nition. The entropy H(X) of a �nite-alphabet rv X is

H(X) = � ∑
x2X

p(x) log p(x).

Remarks.

Units: log2 ! bits, loge ! nats, log10 ! dits.

If p(x) = 0, then p(x) log p(x) = 0 log 0 = 0 by convention.
H(X) depends on X only through p(x): H(X) = H(p).
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1. Information and Shannon entropy

Example. Let

X =
�

1 with probability p,
0 with probability 1� p.

Then
H(X) = �p log p� (1� p) log(1� p) =: H(p).
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1. Information and Shannon entropy

Example (cont�d)

0 1

1

p

H
(p

)

H(p) = 0 when p = 0 or p = 1,
Maximum at p = 1/2: H(1/2) = log 2 = 1 bit.
In general,

Hmax(p) = H( 1
#X , ..., 1

#X ) = � ∑
x2X

1
#X log 1

#X = log #X .
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1. Information and Shannon entropy

De�nition. The Rényi entropy of order q, where q � 0 and q 6= 1, is

Hq(X) =
1

1� q
log ∑

x2X
p(x)q.

H0(X) = log jX j (Hartley entropy)
limq!1 Hq(X) � H1(X) = Shannon entropy

H2(X) = � log ∑ p(x)2 = � log PrfX = Yg where X, Y are i.i.d.
(collision entropy)

limq!∞ Hq(X) � H∞(X) = minf� log p(x)g = � log maxfp(x)g
(min-entropy)

Property.
H0(X) � H1(X) � ... � H∞(X).
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1. Information and Shannon entropy

BRIEF CHRONOLOGY OF ENTROPY

In physics (as a measure of disorder):

Boltzmann (1877), Gibbs (1902), von Neumann (1927),...

In Information theory (as a measure of uncertainty):

Shannon (1948), Kullback-Leibler (1951), Rényi (1961),...

In metric dynamical systems (as a measure of randomness):

Kolmogorov (1958), Sinai (1959),...

In continuous dynamical systems (as a measure of complexity):

Adler-Konheim-McAndrew (1965), Bowen (1971), ...
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1. Information and Shannon entropy

Boltzmann�s tomb at the Zentralfriedhof in Vienna
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1. Information and Shannon entropy

Claude E. Shannon (1916-2001)
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1. Information and Shannon entropy

According to K. Denbigh1:

When Shannon had invented his quantity and consulted von Neumann on
what to call it, von Neumann replied: �Call it entropy. It is already in use
under that name and besides, it will give you a great edge in debates
because nobody knows what entropy is anyway�.

1K. Denbigh. In Maxwell�s Demon, Entropy, Information, Computing (ed. H.S. Le¤
and A.F. Rex), pp. 109-115. Princeton University Press,1990.
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2. Joint entropy and conditional entropy

The joint entropy of two rv X and Y is

H(X, Y) = � ∑
x2X

∑
y2Y

p(x, y) log p(x, y),

where
p(x, y) = PrfX = x, Y = yg.

The entropy of Y conditioned on X, or conditional entropy H(Y jX) is

H(Y jX) = � ∑
x2X

∑
y2Y

p(x, y) log p(y jx) ,

where

p (yj x) =
p(x, y)
p(x)

.
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2. Joint entropy and conditional entropy

Properties

H(X, Y) = H(Y, X)
H(X, Y) = H(X) +H(Y jX) = H(Y) +H(X jY) (Chain rule)
H(X, Y) � H(X) +H(Y)
H(X, Y) = H(X) +H(Y) i¤ X and Y are independent (i.e.,
p(x, y) = p(x)p(y))
H(X jY) � H(X)
H(X jY) = H(X) i¤ X and Y are independent

J.M. Amigó (CIO) Nonlinear time series analysis 15 / 43



2. Joint entropy and conditional entropy

Example. Let (X, Y) have the following probability function p(x, y):

YnX 1 2 3 4 p(y)
1 1

8
1
16

1
32

1
32

1
4

2 1
16

1
8

1
32

1
32

1
4

3 1
16

1
16

1
16

1
16

1
4

4 1
4 0 0 0 1

4

p(x) 1
2

1
4

1
8

1
8

Then

p (yj 1) =
� 1

4 , 1
8 , 1

8 , 1
2

�
, p (yj 2) =

� 1
4 , 1

2 , 1
4 , 0
�

,

p (yj 3) =
� 1

4 , 1
4 , 1

2 , 0
�

, p (yj 4) =
� 1

4 , 1
4 , 1

2 , 0
�

.
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2. Joint entropy and conditional entropy

Example (cont�d). It follows (in bits):

H(X, Y) = ∑ ∑ p(x, y) log2 p(x, y) = 27
8

H(X) = ∑ p(x) log2 p(x) = 7
4

H(Y) = ∑ p(y) log2 p(y) = 2

H(X jY) = ∑ ∑ p(x, y) log2 p(x jy) = 11
8

H(Y jX) = ∑ ∑ p(x, y) log2 p(y jx) = 13
8
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3. Mutual information

De�nition. Let X and Y be two rv with a joint probability function p(x, y)
and marginal probability functions p(x) and p(y), respectively. The mutual
information I(X; Y) is

I(X; Y) = ∑
x2X

∑
y2Y

p(x, y) log
p(x, y)

p(x)p(y)
.

Interpretation: I(X; Y) is the information on X due to the knowledge of
Y, as well as the information on Y due to the knowledge of X.
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3. Mutual information

Properties.

I(X; Y) � 0
I(X; Y) = 0 i¤ X and Y are independent

I(X; Y) = I(Y; X)
I(X; Y) = H(X)�H (Xj Y) = H(Y)�H (Yj X)
I(X; Y) = H(X) +H(Y)�H(X, Y)
I(X; X) = H(X)
I(X; Y) � I(X; ϕ(Y)) for any map ϕ (data processing inequality)

I(X; Y) = I(X; ϕ(Y)) if ϕ is one-to-one
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3. Mutual information

Graphical summary:

H(X, Y)

H(X)

H(Y)

H(X jY) I(X; Y) H(Y jX)
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4. The multivariate case

To go from the previous univariate and bivariate cases to the n-variate
case, just consider X1, ..., Xn a vector-valued rv. For example,

I(X1, ..., Xn; Y1, ..., Ym) = H(X1, ..., Xn) +H(Y1, ..., Ym)

�H(X1, ..., Xn, Y1, ..., Ym).

Theorem (Chain rule for entropy). If X1, X2, ..., Xn are rv with joint
probability function p(x1, ..., xn), then

H(X1, X2, ..., Xn) = H(X1) +H(X2 jX1) +H(X3 jX2, X1) + ...
+H(Xn jXn�1, ..., X1)

=
n

∑
i=1

H(Xi jXi�1, ..., X1) .
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4. The multivariate case

There is a similar chain rule for the mutual information:

I(X1, X2, ..., Xn; Y) = I(X1; Y) + I(X2; Y jX1) + I(X3; Y jX2, X1) + ...
+I(Xn; Y jXn�1, ..., X1)

=
n

∑
i=1

I(Xi; Y jXi�1, ..., X1) .
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5. Random processes

Random processes model the repetition of a random experiment in time.

De�nition. A (discrete-time) random process X is a one-sided sequence

fXngn2N := X1, X2, ..., Xn, ... (or fXngn2N0 := X0, X1, ..., Xn, ...)

or a two-sided sequence

fXngn2Z := ..., X�n, ..., X�1, X0, X1, ..., Xn, ...

of rv with the same alphabet X (but not necessarily with the same
probability functions).

Remark. In Information Theory, random processes are supposed to be
one-sided.

J.M. Amigó (CIO) Nonlinear time series analysis 23 / 43



5. Random processes

X is characterized by the joint probability functions

PrfXn1 = x1, ..., Xnk = xkg

for all k � 1 and n1, ..., nk.

De�nition. A random process is said to be stationary if

PrfXn1 = x1, ..., Xnk = xkg = PrfXn1+h = x1, ..., Xnk+h = xkg

for every k, h � 0, and every x1, ..., xk 2 X .

Interpretation: The statistical properties do not depend on �time�.
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5. Random processes

Finite-alphabet stationary random processes model information sources.

X ======> x1x2...xn...

(xn)n�1 = x1, x2, ... is a message output by the source.
Each block xk+L�1

k = xk, xk+1, ..., xk+L�1 is a word.
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5. Random processes

Example. X = X1, X2, ... is said to be a Markov process if for n = 1, 2, ...

p (xn+1j xn, xn�1, ..., x1) = p (xn+1j xn)

for all x1, ..., xn, xn+1 2 X . It follows

p(x1, x2, ..., xn) = p(x1)p (x2j x1) p (x3j x2) � � � p (xnj xn�1) .
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5. Random processes

If X1, X2, .. are independent rv, then

p (xn+1j xn, xn�1, ..., x1) = p(xn+1)

for any n � 1. Such processes are also called memoryless.

Example.

1 Coin tossing : p(1) = p, p(0) = 1� p. Then

p (x6 = 1j x5 = 0, x4 = 1, x3 = 1, x2 = 0, x1 = 0) = p(1) = p.

2 English language:

p(x6 = P jx5 = O, x4 = R, x3 = T, x2 = N, x1 = E) � 5
7

(entrochal, entrochite, entropic, entropically, entropion, entropium,
entropy).
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5. Random processes

De�nition. The entropy (rate) of a random process X = fXngn�1 is

h(X) = lim
n!∞

1
n

H(X1, ..., Xn)

= � lim
n!∞

1
n ∑

x1,...,xn2X
p(x1, ..., xn) log p(x1, ..., xn),

provided the limit exists.

Remarks.

The units of h(X) are bits/symbol, nats/symbol, dits/symbol, etc.
The expression

h(X1, ..., Xn) =
1
n

H(X1, ..., Xn)

is called the entropy of order n.
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5. Random processes

If X is stationary, then h(X) always exists and h(X) � log jX j.
Theorem. If X = fXngn�1 is a stationary random process, then

lim
n!∞

H (Xnj Xn�1, ..., X1)& h(X).

Consequences.

h(X1, ..., Xn) and H (Xnj Xn�1, ..., X1) overestimate h(X).
Independent processes are the least predictable, hence the most
random ones.
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5. Random processes

Example.
1 If X is i.i.d., then

h(X) = lim
n!∞

H(X1, ..., Xn)

n
= lim

n!∞

nH(X1)

n
= H(X1).

2 If X is an m-state stationary Markov process with probability
transition matrix

P = (Pij)1�i,j�m, where Pij := Pr fXn+1 = jj Xn = ig

and stationary probability distribution

p = (p1, ..., pm), where pP = p,

then

h(X) = �
m

∑
i=1

m

∑
j=1

piPij log Pij.
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5. Random processes

Other information-theoretical quantities can be also extended from random
variables to random processes.

De�nition. The mutual information between two stationary random
processes X = fXig and Y = fYjg is given by

i(X; Y) = lim
n!∞

1
n

I(X1, ..., Xn; Y1, ..., Yn).

J.M. Amigó (CIO) Nonlinear time series analysis 31 / 43



6. Estimation of the entropy rate

The estimation of h(X) in practice faces two basic obstacles:

Real life data sets are �nite, while the h(X) involves an in�nite limit.
The convergence of h(X1, ..., Xn)! h(X) is slow.

We consider two methods:

1 Maximum likelihood, naive or plug-in estimation (MLE)
2 Lempel-Ziv complexity (LZC).
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6.1. Estimation of the entropy rate: MLE

Task: Estimate h(X) from a word xN
1 = x1, ..., xN output by X.

Naive solution:

h(X) = lim
n!∞

h(X1, ..., Xn) ' ĥ(X1, ..., Xn) with n � 1,

where ĥ(X1, ..., Xn) is the so-called maximum likelihood estimator

ĥ(X1, ..., Xn) = �
1
n ∑ p̂(x1, ..., xn) log p̂(x1, ..., xn),

where p̂(x1, ..., xn) is the nth order empirical distribution, i.e.,

p̂(x1, ..., xn) =
1

N� n� 1

N�n�1

∑
i=1

1(Xi = x1, ..., Xi+n�1 = xn)

where 1(�) is the indicator function.
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6.1. Estimation of the entropy rate: MLE

Problem: As the window size n grows, we run into trouble.

1 The number of windows (i.e. samples) decreases as N� n+ 1.
2 The number of length-n blocks x1, ..., xn grows as (#X )n.

This situation is called undersampling.
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6.1. Estimation of the entropy rate: MLE

Example. Illustration of undersampling with a 2-state Markov process.
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Figure: Entropy estimation of a 2-state Markov chain with transition
probabilities p01 = p10 = 0.1 (h(X) = 0.469 bits/symbol).
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6.1. Estimation of the entropy rate: MLE

Remedies.

Algebraic : algebraic correction terms2.

Graphical : extrapolation of the scaling region3.

2P. Grassberger, Phys. Lett. A 128 113 (1985) 369. L. Paninski, Neural Comp. 15
(2003) 1191.

3Strong et al., Phys. Rev. Lett. 80 (1998) 197.
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6.1. Estimation of the entropy rate: MLE

Example. Extrapolating the scaling region over the undersampling region
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Figure: Extrapolating the linear part of h(X1, ..., XL) vs 1/L, over the
undersampling region.
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6.2. Estimation of the entropy rate: LZC

Lempel-Ziv complexity is based on pattern matching.

Applications:

Data compression (WinZip, etc.)

Estimation of the entropy

Versions: LZ76, LZ78,...
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6.2 Estimation of the entropy rate: LZC

Given a �nite message xN
1 = x1, x2, ..., xN, LZ76 decomposes it in minimal

blocks.

Example. Decomposition of x19
1 = 01011010001101110010.

01011010001101110010 ! 0j 1011010001101110010
0j 1011010001101110010 ! 0j 1j 011010001101110010
0j 1j 011010001101110010 ! 0j 1j 011j 010001101110010

etc. At the end:

x19
1 ! 0j 1j 011j 0100j 011011j 1001j 0

Thus, x19
1 has been decomposed into 7 minimal blocks.
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6.2. Estimation of the entropy rate: LZC

De�nition. Given a word xN
1 = x1, x2, ..., xN with #X = k,

the complexity of xN
1 , C(xN

1 ), is the number of its minimal blocks,

the normalized complexity of xN
1 is

c(xN
1 ) =

C(xN
1 )

N/ logk N
=

C(xN
1 )

N
logk N.

In the preceding example: C(x19
1 ) = 7, hence

c(x19
1 ) =

7
19 log2 19 = 1.565 bits/symbol
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6.2. Estimation of the entropy rate: LZC

A �nite-alphabet process is ergodic if it is memoryless on su¢ ciently
long time scales.

An ergodic process is the most general dependent process for which
the Strong Law of Large Numbers holds.

Theorem. If X is an ergodic process, then

lim
N!∞

c(xN
1 ) = h(X) with probability 1.
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6.2. Estimation of the entropy rate: LZC

Numerical simulation4.

4J.M. Amigó et al, Neural Comp. 16 (2004) 717.
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