NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE

José María Amigó

Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain)

OUTLINE OF THE COURSE

LECTURE 1 INFORMATION THEORY
LECTURE 2: DYNAMICAL SYSTEMS
LECTURE 3: SYMBOLIC DYNAMICS
LECTURE 4: NONLINEAR METHODS IN MEDICINE I
LECTURE 5: NONLINEAR METHODS IN MEDICINE II

LECTURE 1 INFORMATION THEORY

OUTLINE

(1) Information and Shannon entropy
(2) Joint entropy and conditional entropy
(3) Mutual information
(9) The multivariate case
(6) Random processes
(6) Estimation of the entropy rate
(- References

1. Information and Shannon entropy

Entropy is a measure of the uncertainty of a random variable.

Notation:

- X a random variable.
- $p(x)=\operatorname{Pr}\{X=x\}$, the probability function of X,

$$
0 \leq p(x) \leq 1, \quad \sum_{x \in \mathcal{X}} p(x)=1
$$

- The alphabet \mathcal{X} is the set of all possible outcomes of X.
- The outcomes of X are also called letters, symbols or states.
- If $\# \mathcal{X}<\infty, X$ is called a finite-alphabet, or finite-state rv

1. Information and Shannon entropy

Definition. The entropy $H(X)$ of a finite-alphabet rv X is

$$
H(X)=-\sum_{x \in \mathcal{X}} p(x) \log p(x)
$$

Remarks.

- Units: $\log _{2} \rightarrow$ bits, $\log _{e} \rightarrow$ nats, $\log _{10} \rightarrow$ dits.
- If $p(x)=0$, then $p(x) \log p(x)=0 \log 0=0$ by convention.
- $H(X)$ depends on X only through $p(x): H(X)=H(p)$.

1. Information and Shannon entropy

Example. Let

$$
X= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Then

$$
H(X)=-p \log p-(1-p) \log (1-p)=: H(p)
$$

1. Information and Shannon entropy

Example (cont'd)

- $H(p)=0$ when $p=0$ or $p=1$,
- Maximum at $p=1 / 2: H(1 / 2)=\log 2=1$ bit.
- In general,

$$
H_{\max }(p)=H\left(\frac{1}{\# \mathcal{X}}, \ldots, \frac{1}{\# \mathcal{X}}\right)=-\sum_{x \in \mathcal{X}} \frac{1}{\# \mathcal{X}} \log \frac{1}{\# \mathcal{X}}=\log \# \mathcal{X} .
$$

1. Information and Shannon entropy

Definition. The Rényi entropy of order q, where $q \geq 0$ and $q \neq 1$, is

$$
H_{q}(X)=\frac{1}{1-q} \log \sum_{x \in \mathcal{X}} p(x)^{q}
$$

- $H_{0}(X)=\log |\mathcal{X}|$ (Hartley entropy)
- $\lim _{q \rightarrow 1} H_{q}(X) \equiv H_{1}(X)=$ Shannon entropy
- $H_{2}(X)=-\log \sum p(x)^{2}=-\log \operatorname{Pr}\{X=Y\}$ where X, Y are i.i.d. (collision entropy)
- $\lim _{q \rightarrow \infty} H_{q}(X) \equiv H_{\infty}(X)=\min \{-\log p(x)\}=-\log \max \{p(x)\}$ (min-entropy)

Property.

$$
H_{0}(X) \geq H_{1}(X) \geq \ldots \geq H_{\infty}(X)
$$

1. Information and Shannon entropy

BRIEF CHRONOLOGY OF ENTROPY

- In physics (as a measure of disorder):

Boltzmann (1877), Gibbs (1902), von Neumann (1927),...

- In Information theory (as a measure of uncertainty):

Shannon (1948), Kullback-Leibler (1951), Rényi (1961),...

- In metric dynamical systems (as a measure of randomness):

Kolmogorov (1958), Sinai (1959),...

- In continuous dynamical systems (as a measure of complexity):

Adler-Konheim-McAndrew (1965), Bowen (1971), ...

1. Information and Shannon entropy

Boltzmann's tomb at the Zentralfriedhof in Vienna

1. Information and Shannon entropy

Claude E. Shannon (1916-2001)

1. Information and Shannon entropy

According to K. Denbigh ${ }^{1}$:
When Shannon had invented his quantity and consulted von Neumann on what to call it, von Neumann replied: "Call it entropy. It is already in use under that name and besides, it will give you a great edge in debates because nobody knows what entropy is anyway".

[^0]
2. Joint entropy and conditional entropy

- The joint entropy of two rv X and Y is

$$
H(X, Y)=-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)
$$

where

$$
p(x, y)=\operatorname{Pr}\{X=x, Y=y\} .
$$

- The entropy of Y conditioned on X, or conditional entropy $H(Y \mid X)$ is

$$
H(Y \mid X)=-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y \mid x),
$$

where

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

2. Joint entropy and conditional entropy

Properties

- $H(X, Y)=H(Y, X)$
- $H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$ (Chain rule)
- $H(X, Y) \leq H(X)+H(Y)$
- $H(X, Y)=H(X)+H(Y)$ iff X and Y are independent (i.e., $p(x, y)=p(x) p(y))$
- $H(X \mid Y) \leq H(X)$
- $H(X \mid Y)=H(X)$ iff X and Y are independent

2. Joint entropy and conditional entropy

Example. Let (X, Y) have the following probability function $p(x, y)$:

$Y \backslash X$	1	2	3	4	$p(y)$
1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
2	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
3	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
4	$\frac{1}{4}$	0	0	0	$\frac{1}{4}$
$p(x)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	

Then

$$
\begin{aligned}
& p(y \mid 1)=\left(\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}\right), p(y \mid 2)=\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 0\right) \\
& p(y \mid 3)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right), p(y \mid 4)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right) .
\end{aligned}
$$

2. Joint entropy and conditional entropy

Example (cont'd). It follows (in bits):

$$
\begin{aligned}
H(X, Y) & =\sum \sum p(x, y) \log _{2} p(x, y)=\frac{27}{8} \\
H(X) & =\sum p(x) \log _{2} p(x)=\frac{7}{4} \\
H(Y) & =\sum p(y) \log _{2} p(y)=2 \\
H(X \mid Y) & =\sum \sum p(x, y) \log _{2} p(x \mid y)=\frac{11}{8} \\
H(Y \mid X) & =\sum \sum p(x, y) \log _{2} p(y \mid x)=\frac{13}{8}
\end{aligned}
$$

3. Mutual information

Definition. Let X and Y be two rv with a joint probability function $p(x, y)$ and marginal probability functions $p(x)$ and $p(y)$, respectively. The mutual information $I(X ; Y)$ is

$$
I(X ; Y)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} .
$$

Interpretation: $I(X ; Y)$ is the information on X due to the knowledge of Y, as well as the information on Y due to the knowledge of X.

3. Mutual information

Properties.

- $I(X ; Y) \geq 0$
- $I(X ; Y)=0$ iff X and Y are independent
- $I(X ; Y)=I(Y ; X)$
- $I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)$
- $I(X ; Y)=H(X)+H(Y)-H(X, Y)$
- $I(X ; X)=H(X)$
- $I(X ; Y) \geq I(X ; \varphi(Y))$ for any map φ (data processing inequality)
- $I(X ; Y)=I(X ; \varphi(Y))$ if φ is one-to-one

3. Mutual information

Graphical summary:

$$
H(X, Y)
$$

\square
\square

$H(X \mid Y)$	$I(X ; Y)$	$H(Y \mid X)$

4. The multivariate case

To go from the previous univariate and bivariate cases to the n-variate case, just consider X_{1}, \ldots, X_{n} a vector-valued rv. For example,

$$
\begin{aligned}
I\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right)= & H\left(X_{1}, \ldots, X_{n}\right)+H\left(Y_{1}, \ldots, Y_{m}\right) \\
& -H\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right) .
\end{aligned}
$$

Theorem (Chain rule for entropy). If $X_{1}, X_{2}, \ldots, X_{n}$ are rv with joint probability function $p\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\begin{aligned}
H\left(X_{1}, X_{2}, \ldots, X_{n}\right)= & H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{2}, X_{1}\right)+\ldots \\
& +H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) \\
= & \sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
\end{aligned}
$$

4. The multivariate case

There is a similar chain rule for the mutual information:

$$
\begin{aligned}
I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right)= & I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)+I\left(X_{3} ; Y \mid X_{2}, X_{1}\right)+\ldots \\
& +I\left(X_{n} ; Y \mid X_{n-1}, \ldots, X_{1}\right) \\
= & \sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, \ldots, X_{1}\right)
\end{aligned}
$$

5. Random processes

Random processes model the repetition of a random experiment in time. Definition. A (discrete-time) random process \mathbf{X} is a one-sided sequence

$$
\left\{X_{n}\right\}_{n \in \mathbb{N}}:=X_{1}, X_{2}, \ldots, X_{n}, \ldots\left(\text { or }\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}:=X_{0}, X_{1}, \ldots, X_{n}, \ldots\right)
$$

or a two-sided sequence

$$
\left\{X_{n}\right\}_{n \in \mathbb{Z}}:=\ldots, X_{-n}, \ldots, X_{-1}, X_{0}, X_{1}, \ldots, X_{n}, \ldots
$$

of $r v$ with the same alphabet \mathcal{X} (but not necessarily with the same probability functions).

Remark. In Information Theory, random processes are supposed to be one-sided.

5. Random processes

\mathbf{X} is characterized by the joint probability functions

$$
\operatorname{Pr}\left\{X_{n_{1}}=x_{1}, \ldots, X_{n_{k}}=x_{k}\right\}
$$

for all $k \geq 1$ and n_{1}, \ldots, n_{k}.
Definition. A random process is said to be stationary if

$$
\operatorname{Pr}\left\{X_{n_{1}}=x_{1}, \ldots, X_{n_{k}}=x_{k}\right\}=\operatorname{Pr}\left\{X_{n_{1}+h}=x_{1}, \ldots, X_{n_{k}+h}=x_{k}\right\}
$$

for every $k, h \geq 0$, and every $x_{1}, \ldots, x_{k} \in \mathcal{X}$.
Interpretation: The statistical properties do not depend on 'time'.

5. Random processes

Finite-alphabet stationary random processes model information sources.

$$
\mathbf{X}======>x_{1} x_{2} \ldots x_{n} \ldots
$$

- $\left(x_{n}\right)_{n \geq 1}=x_{1}, x_{2}, \ldots$ is a message output by the source.
- Each block $x_{k}^{k+L-1}=x_{k}, x_{k+1}, \ldots, x_{k+L-1}$ is a word.

5. Random processes

Example. $\mathbf{X}=X_{1}, X_{2}, \ldots$ is said to be a Markov process if for $n=1,2, \ldots$

$$
p\left(x_{n+1} \mid x_{n}, x_{n-1}, \ldots, x_{1}\right)=p\left(x_{n+1} \mid x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n}, x_{n+1} \in \mathcal{X}$. It follows

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \cdots p\left(x_{n} \mid x_{n-1}\right) .
$$

5. Random processes

If $X_{1}, X_{2}, .$. are independent $r v$, then

$$
p\left(x_{n+1} \mid x_{n}, x_{n-1}, \ldots, x_{1}\right)=p\left(x_{n+1}\right)
$$

for any $n \geq 1$. Such processes are also called memoryless.

Example.

(1) Coin tossing: $p(1)=p, p(0)=1-p$. Then

$$
p\left(x_{6}=1 \mid x_{5}=0, x_{4}=1, x_{3}=1, x_{2}=0, x_{1}=0\right)=p(1)=p
$$

(2) English language:

$$
p\left(x_{6}=P \mid x_{5}=O, x_{4}=R, x_{3}=T, x_{2}=N, x_{1}=E\right) \geq \frac{5}{7}
$$

(entrochal, entrochite, entropic, entropically, entropion, entropium, entropy).

5. Random processes

Definition. The entropy (rate) of a random process $\mathbf{X}=\left\{X_{n}\right\}_{n \geq 1}$ is

$$
\begin{aligned}
h(\mathbf{X}) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right) \\
& =-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{x_{1}, \ldots, x_{n} \in \mathcal{X}} p\left(x_{1}, \ldots, x_{n}\right) \log p\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

provided the limit exists.

Remarks.

- The units of $h(\mathbf{X})$ are bits/symbol, nats/symbol, dits/symbol, etc.
- The expression

$$
h\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)
$$

is called the entropy of order n.

5. Random processes

If \mathbf{X} is stationary, then $h(\mathbf{X})$ always exists and $h(\mathbf{X}) \leq \log |\mathcal{X}|$.
Theorem. If $\mathbf{X}=\left\{X_{n}\right\}_{n \geq 1}$ is a stationary random process, then

$$
\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) \searrow h(\mathbf{X}) .
$$

Consequences.

- $h\left(X_{1}, \ldots, X_{n}\right)$ and $H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right)$ overestimate $h(\mathbf{X})$.
- Independent processes are the least predictable, hence the most random ones.

5. Random processes

Example.

(1) If \mathbf{X} is i.i.d., then

$$
h(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, \ldots, X_{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{n H\left(X_{1}\right)}{n}=H\left(X_{1}\right)
$$

(2) If \mathbf{X} is an m-state stationary Markov process with probability transition matrix

$$
P=\left(P_{i j}\right)_{1 \leq i, j \leq m}, \text { where } P_{i j}:=\operatorname{Pr}\left\{X_{n+1}=j \mid X_{n}=i\right\}
$$

and stationary probability distribution

$$
\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right), \text { where } \mathbf{p} P=\mathbf{p}
$$

then

$$
h(\mathbf{X})=-\sum_{i=1}^{m} \sum_{j=1}^{m} p_{i} P_{i j} \log P_{i j}
$$

5. Random processes

Other information-theoretical quantities can be also extended from random variables to random processes.

Definition. The mutual information between two stationary random processes $\mathbf{X}=\left\{X_{i}\right\}$ and $\mathbf{Y}=\left\{Y_{j}\right\}$ is given by

$$
i(X ; Y)=\lim _{n \rightarrow \infty} \frac{1}{n} I\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)
$$

6. Estimation of the entropy rate

The estimation of $h(\mathbf{X})$ in practice faces two basic obstacles:

- Real life data sets are finite, while the $h(\mathbf{X})$ involves an infinite limit.
- The convergence of $h\left(X_{1}, \ldots, X_{n}\right) \rightarrow h(\mathbf{X})$ is slow.

We consider two methods:
(1) Maximum likelihood, naive or plug-in estimation (MLE)
(2) Lempel-Ziv complexity (LZC).

6.1. Estimation of the entropy rate: MLE

Task: Estimate $h(\mathbf{X})$ from a word $x_{1}^{N}=x_{1}, \ldots, x_{N}$ output by \mathbf{X}.

Naive solution:

$$
h(\mathbf{X})=\lim _{n \rightarrow \infty} h\left(X_{1}, \ldots, X_{n}\right) \simeq \hat{h}\left(X_{1}, \ldots, X_{n}\right) \text { with } n \gg 1
$$

where $\hat{h}\left(X_{1}, \ldots, X_{n}\right)$ is the so-called maximum likelihood estimator

$$
\hat{h}\left(X_{1}, \ldots, X_{n}\right)=-\frac{1}{n} \sum \hat{p}\left(x_{1}, \ldots, x_{n}\right) \log \hat{p}\left(x_{1}, \ldots, x_{n}\right)
$$

where $\hat{p}\left(x_{1}, \ldots, x_{n}\right)$ is the nth order empirical distribution, i.e.,

$$
\hat{p}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{N-n-1} \sum_{i=1}^{N-n-1} \mathbf{1}\left(X_{i}=x_{1}, \ldots, X_{i+n-1}=x_{n}\right)
$$

where $\mathbf{1}(\cdot)$ is the indicator function.

6.1. Estimation of the entropy rate: MLE

Problem: As the window size n grows, we run into trouble.
(1) The number of windows (i.e. samples) decreases as $N-n+1$.
(2) The number of length- n blocks x_{1}, \ldots, x_{n} grows as $(\# \mathcal{X})^{n}$.

This situation is called undersampling.

6.1. Estimation of the entropy rate: MLE

Example. Illustration of undersampling with a 2-state Markov process.

Figure: Entropy estimation of a 2-state Markov chain with transition probabilities $p_{01}=p_{10}=0.1(h(\mathbf{X})=0.469$ bits $/$ symbol $)$.

6.1. Estimation of the entropy rate: MLE

Remedies.

- Algebraic: algebraic correction terms ${ }^{2}$.
- Graphical: extrapolation of the scaling region ${ }^{3}$.

[^1]
6.1. Estimation of the entropy rate: MLE

Example. Extrapolating the scaling region over the undersampling region

Figure: Extrapolating the linear part of $h\left(X_{1}, \ldots, X_{L}\right)$ vs $1 / L$, over the undersampling region.

6.2. Estimation of the entropy rate: LZC

Lempel-Ziv complexity is based on pattern matching.

Applications:

- Data compression (WinZip, etc.)
- Estimation of the entropy

Versions: LZ76, LZ78,...

6.2 Estimation of the entropy rate: LZC

Given a finite message $x_{1}^{N}=x_{1}, x_{2}, \ldots, x_{N}$, LZ76 decomposes it in minimal blocks.

Example. Decomposition of $x_{1}^{19}=01011010001101110010$.

$$
\begin{array}{llll}
\mathbf{0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0} & \rightarrow & 0 \mid 1011010001101110010 \\
0 \mid \mathbf{1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0} & \rightarrow & 0|1| 011010001101110010 \\
0|1| \mathbf{0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0} & \rightarrow & 0|1| \mathbf{0 1 1} \mid 010001101110010
\end{array}
$$

etc. At the end:

$$
x_{1}^{19} \rightarrow 0|1| 011|0100| 011011|1001| 0
$$

Thus, x_{1}^{19} has been decomposed into 7 minimal blocks.

6.2. Estimation of the entropy rate: LZC

Definition. Given a word $x_{1}^{N}=x_{1}, x_{2}, \ldots, x_{N}$ with $\# \mathcal{X}=k$,

- the complexity of $x_{1}^{N}, C\left(x_{1}^{N}\right)$, is the number of its minimal blocks,
- the normalized complexity of x_{1}^{N} is

$$
c\left(x_{1}^{N}\right)=\frac{C\left(x_{1}^{N}\right)}{N / \log _{k} N}=\frac{C\left(x_{1}^{N}\right)}{N} \log _{k} N .
$$

In the preceding example: $C\left(x_{1}^{19}\right)=7$, hence

$$
c\left(x_{1}^{19}\right)=\frac{7}{19} \log _{2} 19=1.565 \mathrm{bits} / \text { symbol }
$$

6.2. Estimation of the entropy rate: LZC

- A finite-alphabet process is ergodic if it is memoryless on sufficiently long time scales.
- An ergodic process is the most general dependent process for which the Strong Law of Large Numbers holds.

Theorem. If \mathbf{X} is an ergodic process, then

$$
\lim _{N \rightarrow \infty} c\left(x_{1}^{N}\right)=h(\mathbf{X}) \text { with probability } 1
$$

6.2. Estimation of the entropy rate: LZC

Numerical simulation ${ }^{4}$.

[^2]
References

(1) R.B. Ash, Information Theory. Dover Publications, New York, 1990.
(2) T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd edition. New York, John Wiley \& Sons, 2006.
(3) D. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003.
(9) L. Paninski, Estimation of entropy and mutual information, Neural Computation 15 (2003) 1191.

[^0]: ${ }^{1}$ K. Denbigh. In Maxwell's Demon, Entropy, Information, Computing (ed. H.S. Leff and A.F. Rex), pp. 109-115. Princeton University Press,1990.

[^1]: ${ }^{2}$ P. Grassberger, Phys. Lett. A 128113 (1985) 369. L. Paninski, Neural Comp. 15 (2003) 1191.
 ${ }^{3}$ Strong et al., Phys. Rev. Lett. 80 (1998) 197.

[^2]: ${ }^{4}$ J.M. Amigó et al, Neural Comp. 16 (2004) 717.

