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1. Information and Shannon entropy

Entropy is a measure of the uncertainty of a random variable.
Notation:

@ X a random variable.
e p(x) = Pr{X = x}, the probability function of X,

0<p(x) <1, ) px)
xeX

@ The alphabet X is the set of all possible outcomes of X.
@ The outcomes of X are also called letters, symbols or states.
o If #X < oo, X is called a finite-alphabet, or finite-state rv
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1. Information and Shannon entropy

Definition. The entropy H(X) of a finite-alphabet rv X is
H(X) = - }_ p(x)logp(x).
xeX
Remarks.

e Units: log, — bits, log, — nats, log,, — dits.
e If p(x) =0, then p(x)logp(x) = 0log0 = 0 by convention.
e H(X) depends on X only through p(x): H(X) = H(p).
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1. Information and Shannon entropy

Example. Let

X — 1 with probability p,
~ | 0 with probability 1 — p.

Then
H(X) = —plogp — (1 —p)log(1 —p) =: H(p).

J.M. Amigé (CIO) Nonlinear time series analysis



1. Information and Shannon entropy

Example (cont'd)

HE)

e H(p) =0whenp=0o0rp=1,
e Maximum at p =1/2: H(1/2) =log2 =1 bit.

@ In general,

Hmax(p) = H(ﬁr---, #L) = — Z ﬁlogﬁ = log#X
xeXx
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1. Information and Shannon entropy

Definition. The Rényi entropy of order q, where g > 0 and g # 1, is

Hy(X) = —

log Z p(x)7.

I—q xEX

e Hy(X) = log |X| (Hartley entropy)

o lim, .1 Hy(X) = H1(X) = Shannon entropy

o Hy(X) = —log Y p(x)?> = —logPr{X = Y} where X, Y are i.i.d.
(collision entropy)

o lim; .o Hy(X) = Heo(X) = min{—logp(x)} = —logmax{p(x)}
(min-entropy)

Property.
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1. Information and Shannon entropy

BRIEF CHRONOLOGY OF ENTROPY

@ In physics (as a measure of disorder):
Boltzmann (1877), Gibbs (1902), von Neumann (1927),...

@ In Information theory (as a measure of uncertainty):
Shannon (1948), Kullback-Leibler (1951), Rényi (1961),...

@ In metric dynamical systems (as a measure of randomness):
Kolmogorov (1958), Sinai (1959),...

@ In continuous dynamical systems (as a measure of complexity):

Adler-Konheim-McAndrew (1965), Bowen (1971), ...
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1. Information and Shannon entropy

LYDWIG
BOLTZMANN
18341906

f

F

Boltzmann's tomb at the Zentralfriedhof in Vienna
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1. Information and Shannon entropy

Claude E. Shannon (1916-2001)
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1. Information and Shannon entropy

According to K. Denbigh!:

When Shannon had invented his quantity and consulted von Neumann on
what to call it, von Neumann replied: “Call it entropy. It is already in use
under that name and besides, it will give you a great edge in debates
because nobody knows what entropy is anyway”.

1K. Denbigh. In Maxwell’s Demon, Entropy, Information, Computing (ed. H.S. Leff
and A.F. Rex), pp. 109-115. Princeton University Press,1990.
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2. Joint entropy and conditional entropy

@ The joint entropy of two rv X and Y is

H(X,Y)=—) Y p(xy)logp(x,y),
xeX yey

where
p(x,y) =Pr{X=xY =y}
@ The entropy of Y conditioned on X, or conditional entropy H(Y |X) is

HY|X)=~-) ) pxy)logpylv),
xeX yey

where

J.M. Amigé (CIO) Nonlinear time series analysis



2. Joint entropy and conditional entropy

Properties
o H(X,Y) = H(Y,X)
e H(X,Y)=H(X)+H(Y|X) =H(Y) + H(X|Y) (Chain rule)
o H(X,Y) < H(X) + H(Y)
e H(X,Y) =H(X)+ H(Y) iff X and Y are independent (i.e.,
p(xy) =p)py))

o H(X|Y) < H(X)
e H(X|Y) =H(X) iff X and Y are independent
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2. Joint entropy and conditional entropy

Example. Let (X,Y) have the following probability function p(x,y):

(X[ 1[2]3]4[pW]
1 T T L L]L T
8 16 32 32 4
s LT L% T
16 8 32 32 4
3 L[ L L1 T
16 16 16 16 4
4 [ FlofJolol]l i
lr@ [ 1zlglsgl
Then
Pyl = (Lgs) PW2)=(1310),
P13 = (£330, P4 =(41130).
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2. Joint entropy and conditional entropy

Example (cont'd). It follows (in bits):

HXY) = )} ) pxy) logzp(xy)=f
H(X) = ) p(x)log,p(x) =
H(Y) = Y ply logzpy)—2
HX[Y) = Y)Y pxy)log,plxly) = %
HY|X) = Y Y plxy)log,pylx) = ¥
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3. Mutual information

Definition. Let X and Y be two rv with a joint probability function p(x,vy)

and marginal probability functions p(x) and p(y), respectively. The mutual
information I1(X;Y) is

og PY)
1060 = 2, L penlog o,

Interpretation: I(X;Y) is the information on X due to the knowledge of
Y, as well as the information on Y due to the knowledge of X.
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3. Mutual information

Properties.
e I(X;Y) >0
e I[(X;Y) =0iff X and Y are independent
o I(X;Y) =1(Y; X)
o I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y| X)
o I(X;Y)=H(X)+H(Y)-H(X,Y)
e I(X;X) =H(X)
e I(X;Y) > I(X; 9(Y)) for any map ¢ (data processing inequality)
o I(X;Y) =I(X; ¢(Y)) if ¢ is one-to-one
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3. Mutual information

Graphical summary:

| HX]Y) I I(X;Y) [ HYX) |
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4. The multivariate case

To go from the previous univariate and bivariate cases to the n-variate
case, just consider Xi, ..., X, a vector-valued rv. For example,

I(X1, 0 X3 Y1, Yo) = H(X4,., Xp) + H(Y1, ., Yir)
—H(X1, oy X, Y1, o0y V).

Theorem (Chain rule for entropy). If Xy,X5,..., X, are rv with joint
probability function p(xy, ..., X,), then

H(X1,X5,...Xn) = H(X1) +H(X2|X1) + H(X3| X2, X1) + ...
+H(Xn |Xn_1,...,X1>

n
= Y H(Xi[Xi—1,., X1).
i=1
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4. The multivariate case

There is a similar chain rule for the mutual information:

I(X],Xz, ...,Xn; Y) = I(X];Y) —|—I(X2;Y |X1) +I(X3,‘Y ‘Xz,Xl) + ..
+I(Xn;Y‘Xn_1,...,X1)

n
= Y I(X;Y|Xiz1, .. X1)
i=1
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5. Random processes

Random processes model the repetition of a random experiment in time.

Definition. A (discrete-time) random process X is a one-sided sequence
{Xitnen = X1, X0, o0, X, oo (08 {Xin}nen, == Xo, X1, s Xy o)
or a two-sided sequence
{Xntnez := o, Xy oy X1, X0, X1, 0es Xty oo

of rv with the same alphabet X' (but not necessarily with the same
probability functions).

Remark. In Information Theory, random processes are supposed to be
one-sided.
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5. Random processes

X is characterized by the joint probability functions
Pr{an = X1, ey Xnk — xk}

for all k > 1 and ny, ..., ny.

Definition. A random process is said to be stationary if

PI‘{an = X1, ---ank = xk} = Pr{Xn1+h = X1, ey Xnk+h = xk}

for every k,h > 0, and every x1,...,x; € X.

Interpretation: The statistical properties do not depend on ‘time’.
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5. Random processes

Finite-alphabet stationary random processes model information sources.

] X | ======> x10..%...

® (Xy)p>1 = X1,Xy,... is a message output by the source.

o Each block x{ ™71 = xp, x¢ 1, oo, Xy L1 is @ word.
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5. Random processes

Example. X = X3, X5, ... is said to be a Markov process if forn =1,2, ...
P (Xng1| X Xn—1, -, X1) = P (Xng1] Xn)
for all xq,...,x, x,41 € X. It follows

pxe, X2, Xn) = p(x1)p (x2] x1) p (x3] x2) - - - p (Xn] Xn—1) -
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5. Random processes

If X1, X5, .. are independent rv, then

P (Xns1| Xn, Xn—1, .., X1) = p(Xn41)

for any n > 1. Such processes are also called memoryless.
Example.

@ Coin tossing: p(1) =p,p(0) =1 —p. Then
pxe=1lx5=0xa=1,x3=1,x=0x =0)=p(1) =p.
@ English language:
p(xe =Plxs =0,x4 =R,x3=T,x, =N,xy =E) > ;

(entrochal, entrochite, entropic, entropically, entropion, entropium,
entropy).
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5. Random processes

Definition. The entropy (rate) of a random process X = {Xj, },>1 is

MX) = lim SH(Xy, .., X)

n—oo 1

provided the limit exists.
Remarks.

@ The units of h(X) are bits/symbol, nats/symbol, dits/symbol, etc.

@ The expression
1
h(Xl, ...,Xn) - EH(X],...,X}Q)

is called the entropy of order n.
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5. Random processes

If X is stationary, then h(X) always exists and h(X) < log|X|.

Theorem. If X = {X, },>1 is a stationary random process, then

im H (Xn| anl, ceey X1) \ h(X)

n—o0

Consequences.

e h(Xy,...,Xy) and H (X;,| Xp—1,..., X1) overestimate h(X).

@ Independent processes are the least predictable, hence the most
random ones.
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5. Random processes

Example.
Q If Xisiid., then

h(X) — lim H(Xl,...,Xn) — lim nH(Xl)

n—o0 n n—oo n

= H(X1).
@ If X is an m-state stationary Markov process with probability
transition matrix
P= (Pij)lgi,jgmz where P;; := Pr {Xp1 =j| X =i}
and stationary probability distribution
p = (p1,-,Pm), where pP = p,

then

h(X) = — Z szpl] lOgPZ]
i=1j=1
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5. Random processes

Other information-theoretical quantities can be also extended from random
variables to random processes.

Definition. The mutual information between two stationary random
processes X = {X;} and Y = {Y;} is given by

i(GY) = im S1(Xy, o Xni Yy oy Yor).

n—oo 1
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6. Estimation of the entropy rate

The estimation of #(X) in practice faces two basic obstacles:

@ Real life data sets are finite, while the #(X) involves an infinite limit.

@ The convergence of h(Xjy, ..., X;) — h(X) is slow.
We consider two methods:

@ Maximum likelihood, naive or plug-in estimation (MLE)
@ Lempel-Ziv complexity (LZC).
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6.1. Estimation of the entropy rate: MLE

Task: Estimate h(X) from a word xll\[ = X1, ..., XN output by X.

Naive solution:

h(X) = lim h(Xy, .., X,)) ~ h(Xq, ..., X,) with n>> 1,

n—oo

where fl(X1,..., X,) is the so-called maximum likelihood estimator

h(Xll / = ZP X1y ee0r X logp(xll X )

where p(x1, ..., x,) is the nth order empirical distribution, i.e.,
N—n—-1
p(x1, .0 ) = —] Z 1(X; =x1,000, Xivn_1 = Xn)

i=

where 1(-) is the indicator function.
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6.1. Estimation of the entropy rate: MLE

Problem: As the window size 1 grows, we run into trouble.
© The number of windows (i.e. samples) decreases as N —n + 1.
n

@ The number of length-n blocks xy, ..., x,, grows as (#X)

This situation is called undersampling.
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6.1. Estimation of the entropy rate: MLE

Example. lllustration of undersampling with a 2-state Markov process.

Entropy

Figure: Entropy estimation of a 2-state Markov chain with transition
probabilities pg1 = p10 = 0.1 (h(X) = 0.469 bits/symbol).
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6.1. Estimation of the entropy rate: MLE

Remedies.

e Algebraic: algebraic correction terms?.

o Graphical: extrapolation of the scaling region3.

2P. Grassberger, Phys. Lett. A 128 113 (1985) 369. L. Paninski, Neural Comp. 15
(2003) 1191.
3Strong et al., Phys. Rev. Lett. 80 (1998) 197.
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6.1. Estimation of the entropy rate: MLE

Example. Extrapolating the scaling region over the undersampling region

Entropyrate

Figure: Extrapolating the linear part of h(X, ..., X) vs 1/L, over the
undersampling region.
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6.2. Estimation of the entropy rate: LZC

Lempel-Ziv complexity is based on pattern matching.
Applications:

e Data compression (WinZip, etc.)

o Estimation of the entropy

Versions: LZ76, LZ78,...
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6.2 Estimation of the entropy rate: LZC

Given a finite message xll\] = X1,X2,...,XN, LZ76 decomposes it in minimal
blocks.

Example. Decomposition of x%9 = 01011010001101110010.

01011010001101110010 — 0]1011010001101110010
0/1011010001101110010 — 0| 1/011010001101110010
0| 1/011010001101110010 — 0] 1] 011|010001101110010

etc. At the end:
x1” — 0] 1| 011] 0100| 011011 1001| 0

Thus, x%g has been decomposed into 7 minimal blocks.
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6.2. Estimation of the entropy rate: LZC

Definition. Given a word xll\’ = X1,Xp,...,xN with #X =k,

N

o the complexity of xll\l, C(x1 ) is the number of its minimal blocks,

@ the normalized complexity of xll\] is
CxY)  _ C(x)

N
= = I )
C(xl ) N/ logkN N ngN

In the preceding example: C(x{?) = 7, hence

c(x}?) = % log, 19 = 1.565 bits/symbol
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6.2. Estimation of the entropy rate: LZC

@ A finite-alphabet process is ergodic if it is memoryless on sufficiently
long time scales.

@ An ergodic process is the most general dependent process for which
the Strong Law of Large Numbers holds.

Theorem. If X is an ergodic process, then

lim c(x}') = h(X) with probability 1.

N—oo
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6.2. Estimation of the entropy rate: LZC

Numerical simulation®.
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4J.M. Amigé et al, Neural Comp. 16 (2004) 717.
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